4.8 Article

Stress-Triggered Phase Separation Is an Adaptive, Evolutionarily Tuned Response

期刊

CELL
卷 168, 期 6, 页码 1028-+

出版社

CELL PRESS
DOI: 10.1016/j.cell.2017.02.027

关键词

-

资金

  1. Pew Charitable Trusts
  2. NIH via the Protein Translation Research Network [GM105816, GM55694, T32 EB009412-07, T32 GM007183]
  3. NSF [GRF DGE-1144082]
  4. US Army Research Office Multidisciplinary University Research Initiative [W911NF-14-1-0411]
  5. big Ideas Generator seed grant
  6. DOE [DEAC02-06CH11357]

向作者/读者索取更多资源

In eukaryotic cells, diverse stresses trigger coalescence of RNA-binding proteins into stress granules. In vitro, stress-granule-associated proteins can demix to form liquids, hydrogels, and other assemblies lacking fixed stoichiometry. Observing these phenomena has generally required conditions far removed from physiological stresses. We show that poly(A)-binding protein (Pab1 in yeast), a defining marker of stress granules, phase separates and forms hydrogels in vitro upon exposure to physiological stress conditions. Other RNA-binding proteins depend upon low-complexity regions (LCRs) or RNA for phase separation, whereas Pab1' s LCR is not required for demixing, and RNA inhibits it. Based on unique evolutionary patterns, we create LCR mutations, which systematically tune its biophysical properties and Pab1 phase separation in vitro and in vivo. Mutations that impede phase separation reduce organism fitness during prolonged stress. Poly(A)-binding protein thus acts as a physiological stress sensor, exploiting phase separation to precisely mark stress onset, a broadly generalizable mechanism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据