4.8 Article

3D Aluminum Hybrid Plasmonic Nanostructures with Large Areas of Dense Hot Spots and Long-Term Stability

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 27, 期 10, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201605703

关键词

aluminum; hot spots; hybrid nanostructures; plasmonic materials; surface-enhanced Raman spectroscopy

资金

  1. National Key Basic Research Program of China [2014CB931703]
  2. Natural Science Foundation of China [51271129, 51572188]
  3. Natural Science Foundation of Tianjin City [14JCYBJC17200]
  4. Program for New Century Excellent Talents in University [NCET-13-0414]

向作者/读者索取更多资源

Plasmonic materials possessing dense hot spots with high field enhancement over a large area are highly desirable for ultrasensitive biochemical sensing and efficient solar energy conversion; particularly those based on low-cost noncoinage metals with high natural abundance are of considerable practical significance. Here, 3D aluminum hybrid nanostructures (3D-Al-HNSs) with high density of plasmonic hot spots across a large scale are fabricated via a highly efficient and scalable nonlithographic method, i.e., millisecond-laser-direct-writing in liquid nitrogen. The nanosized alumina interlayer induces intense and dual plasmonic resonance couplings between adjacent Al nanoparticles with bimodal size distribution within each of the hybrid assemblies, leading to remarkably elevated localized electric fields (or hot spots) accessible to the analytes or reactants. The 3D-stacked nanostructure substantially raises the hot spot density, giving rise to plasmon-enhanced light harvesting from deep UV to the visible, strong enhancement of Raman signals, and a very low limit of detection outperforming reported Al nanostructures, and even comparable to the noble metals. Combined with the long-term stability and good reproducibility, the 3D-Al-HNSs hold promise as a robust low-cost plasmonic material for applications in plasmon-enhanced spectroscopic sensing and light harvesting.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据