4.6 Article

Fabrication and efficiency measurement of a Mo/C/Si/C three material system multilayer Laue lens

期刊

APPLIED PHYSICS LETTERS
卷 110, 期 11, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4978610

关键词

-

资金

  1. X-ray Science Division of the Advanced Photon Source
  2. U.S. Dept. of Energy, Office of Basic Energy Sciences [DE-AC-02-06CH11357]

向作者/读者索取更多资源

In this letter, we report on the manufacturing of a multilayer Laue lens (MLL) consisting of a multilayer stack with three materials: molybdenum and silicon as the absorber and spacer layer, respectively, and carbon as transition layers. The design has four layers per period: Mo/C/Si/C. It yields 6000 zones and provides an aperture of 50 mu m. This allows the MLL structure to accept a large portion of the coherent part of the beam and to achieve a small spot size. The MLL deposition was made by magnetron sputtering at the Fraunhofer IWS, and the sectioning was done by laser cutting and subsequent focused ion beam milling to a thickness that provides a good efficiency for a photon energy of 12 keV. The diffraction efficiency as a function of the tilting angle has been measured at beamline 1-BM of the Advanced Photon Source. An efficiency of almost 40% has been achieved. This shows that the material system performs well compared to MLLs made of twomaterials and that it is in excellent agreement with the numerically calculated efficiency for a comparable molybdenum/silicon bilayer system lens. We conclude that the three material system offers high efficiencies and is advantageous for stress reduction in MLLs. Published by AIP Publishing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据