4.8 Article

In Situ X-ray Scattering Studies of the Influence of an Additive on the Formation of a Low-Bandgap Bulk Heterojunction

期刊

CHEMISTRY OF MATERIALS
卷 29, 期 5, 页码 2283-2293

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemmater.6b05358

关键词

-

资金

  1. National Research Council
  2. Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]

向作者/读者索取更多资源

The evolution of the morphology of a high -efficiency, blade -coated, organic -photovoltaic (OPV) active layer containing the low band gap polymer poly[(4,8-bis[5-(2-ethylhexyl)thiophene-2yl]benzo [1,2-b :4,5-b dithioph en e) -2,6-diyl-a lt-(4-(2-ethylh exan oyl) thieno [3,4-b]thiophene))-2,6-diy1] (PBDTTT-C-T) is examined by in situ X-ray scattering. In situ studies enable real-time characterization of the effect of the processing additive 1,8-diiodoocatane (DIO) on the active layer morphology. In the presence of DIO, X-ray scattering indicates that domain structure radically changes and increases in purity, while X-ray diffraction reveals little change in crystallinity/local order. The solidification behavior of this active layer differs dramatically from those that strongly crystallize such as poly(3hexylthiophene) and small molecule containing systems, exposing significant diversity in the solidification routes relevant to high-efficiency polymer fullerene OPV processing. In the presence of DIO, we find quantitative agreement between the evolution of the phase structure revealed by small -angle X-ray scattering and the binodal phase structure of a simple Flory Huggins model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据