4.7 Article

Carbon stocks and dynamics at different successional stages in an Afromontane tropical forest

期刊

BIOGEOSCIENCES
卷 14, 期 5, 页码 1285-1303

出版社

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/bg-14-1285-2017

关键词

-

资金

  1. University of Rwanda - Sweden program for Research, Higher Education and Institutional Advancement by Swedish International Development Cooperation Agency (Sida)
  2. Strategic Research Area Biodiversity and Ecosystem Services in a Changing Climate (BECC)

向作者/读者索取更多资源

As a result of different types of disturbance, forests are a mixture of stands at different stages of ecological succession. Successional stage is likely to influence forest productivity and carbon storage, linking the degree of forest disturbance to the global carbon cycle and climate. Although tropical montane forests are an important part of tropical forest ecosystems (ca. 8 %, elevation > 1000m a.s.l.), there are still significant knowledge gaps regarding the carbon dynamics and stocks of these forests, and how these differ between early (ES) and late successional (LS) stages. This study examines the carbon (C) stock, relative growth rate (RGR) and net primary production (NPP) of ES and LS forest stands in an Afromontane tropical rainforest using data from inventories of quantitatively important ecosystem compartments in fifteen 0.5 ha plots in Nyungwe National Park in Rwanda. The total C stock was 35% larger in LS compared to ES plots due to significantly larger above-ground biomass (AGB; 185 and 76MgC ha(-1) in LS and ES plots), while the soil and root C stock (down to 45 cm depth in the mineral soil) did not significantly differ between the two successional stages (178 and 204MgC ha(-1) in LS and ES plots). The main reasons for the difference in AGB were that ES trees had significantly lower stature and wood density compared to LS trees. However, ES and LS stands had similar total NPP (canopy, wood and roots of all plots similar to 9.4MgC ha(-1)) due to counterbalancing effects of differences in AGB (higher in LS stands) and RGR (higher in ES stands). The AGB in the LS plots was considerably higher than the average value reported for old-growth tropical montane forest of south-east Asia and Central and South America at similar elevations and temperatures, and of the same magnitude as in tropical lowland forest of these regions. The results of this study highlight the importance of accounting for disturbance regimes and differences in wood density and allometry of tree species dominating at different successional stages in an attempt to quantify the C stock and sink strength of tropical montane forests and how they may differ among continents.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据