4.8 Article

Amplified fluorescent sensing of DNA using luminescent carbon dots and AuNPs/GO as a sensing platform: A novel coupling of FRET and DNA hybridization for homogeneous HIV-1 gene detection at femtomolar level

期刊

BIOSENSORS & BIOELECTRONICS
卷 89, 期 -, 页码 773-780

出版社

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2016.10.033

关键词

DNA hybridization; Carbon dot; Fluorescence resonance energy transfer; HIV-1 gene; Gold nanoparticles; Graphene oxide

资金

  1. Iranian Nanotechnology initiative and Research Office of University of Kurdistan

向作者/读者索取更多资源

The demand for simple, sensitive, affordable, and selective DNA biosensors is willing, due to the important role of DNA detection in the areas of disease diagnostics, environment monitoring and food safety. The presented work is devoted to the fabrication of an ultrasensitive homogeneous biosensor for the detection of DNA sequences related to HIV based on fluorescence resonance energy transfer(FRET) between carbon dots(CDs) and AuNPs as nanoquenchers. CDs as fluorophore with average size 3-4 nm were prepared by hydrothermal treatment of histidine. In this respect, the hybridization was occurring between the assemblies of fluorescence CDs functionalized 5-amino-labeled oligonucleotides as capture probe and label free oligonucleotides as detection probe. Due to strong fluorescence and good biocompatibility of CDs, the capture probe was covalently conjugated to CDs. In the presence of the target probe, the association between capture probe-CDs and detection probe is stronger than that between capture probe-CDs and AuNPs, leading to the release of the capture probe-CDs from AuNPs, resulting in the recovery of the fluorescence of CDs. This oligonucleotides detection probe was observed to detect target oligonucleotides specifically and sensitively in a linear range from 50.0 fM to 1.0 nM with a detection limit of 15 fM. Furthermore, the sensitivity of this FRET strategy amplified using AuNPs/graphene oxide nanocomposite as quencher. The Sensor response indicates only the complementary sequence showing an obvious change signal in comparison to non-complementary and two bases mismatched sequences. Moreover, satisfactory results from determination of HIV DNA target in human serum were obtained showing great potential of the proposed method for real sample analysis. The proposed biosensor with highly biocompatibility and nontoxicity, can be developed for detection of other DNA biomarkers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据