4.8 Article

Reduced SnO2 Porous Nanowires with a High Density of Grain Boundaries as Catalysts for Efficient Electrochemical CO2-into-HCOOH Conversion

期刊

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
卷 56, 期 13, 页码 3645-3649

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/anie.201612194

关键词

CO2 reduction; grain boundaries; heterogeneous catalysts; porous nanowires; tin oxide

资金

  1. Kentucky Department for Energy Development and Independence grant [PON2 127 1500002410]
  2. Conn Center for Renewable Energy Research at the University of Louisville

向作者/读者索取更多资源

Electrochemical conversion of CO2 into energydense liquids, such as formic acid, is desirable as a hydrogen carrier and a chemical feedstock. SnOx is one of the few catalysts that reduce CO2 into formic acid with high selectivity but at high overpotential and low current density. We show that an electrochemically reduced SnO2 porous nanowire catalyst (Sn-pNWs) with a high density of grain boundaries (GBs) exhibits an energy conversion efficiency of CO2-into-HCOOH higher than analogous catalysts. HCOOH formation begins at lower overpotential (350 mV) and reaches a steady Faradaic efficiency of ca. 80% at only -0.8 V vs. RHE. A comparison with commercial SnO2 nanoparticles confirms that the improved CO2 reduction performance of Sn-pNWs is due to the density of GBs within the porous structure, which introduce new catalytically active sites. Produced with a scalable plasma synthesis technology, the catalysts have potential for application in the CO2 conversion industry.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据