4.7 Article Proceedings Paper

Self-organized growth and magnetic properties of epitaxial silicide nanoislands

期刊

APPLIED SURFACE SCIENCE
卷 391, 期 -, 页码 24-32

出版社

ELSEVIER
DOI: 10.1016/j.apsusc.2016.02.168

关键词

Silicide Nanoislands; Self Organization; Solid Phase Epitaxy; Reactive Deposition Epitaxy; Scanning Tunneling Microscopy; Magnetic Properties

向作者/读者索取更多资源

Self-organized transition-metal (Ni and Fe) and rare-earth (Er) silicide nanostructures were grown on Si(1 11) and Si(0 0 1) surfaces under low coverage conditions, in a solid phase and reactive deposition epitaxial regimes. Island evolution was continuously monitored in-situ, using real-time scanning tunneling microscopy and surface electron diffraction. After anneal of a Ni/Si(1 1 1) surface at 700 degrees C, we observed small hemispherical Ni-silicide nanoislands similar to 10 nm in diameter decorating surface steps in a self-ordered fashion and pinning them. Fe-silicide nanoislands formed after a 550 degrees C anneal of a Fe covered surface, were also self-ordered along the surface step-bunches, however were significantly larger (similar to 70 x 10 nm) and exhibited well-developed three-dimensional polyhedral shapes. Ni-silicide islands were sparsely distributed, separated by about similar to 100 nm from one another, on average, whereas Fe-silicide islands were more densely packed, with only similar to 50 nm mean separation distance. In spite of the above differences between both types of island in size, shape, and number density, the self-ordering in both cases was close to ideal, with practically no islands nucleated on terraces. Superconducting quantum interference device magnetometry showed considerable superparamagnetism, in particular in Fe-silicide islands with similar to 1.9 mu(B)/Fe atom, indicating stronger ferromagnetic coupling of individual magnetic moments, contrary to Ni-silicide islands with the calculated moments of only similar to 0.5,mu(B)/Ni atom. To elucidate the effects of the island size, shape, and lateral ordering on the measured magnetic response, we have controllably changed the island morphology by varying deposition methods and conditions and even using differently oriented Si substrates. We have also begun experimenting with rare-earth silicide islands. In the forthcoming experiments we intend to compare the magnetic response of these variously built and composed islands and correlate between their composition, crystal and morphological characteristics, and the resultant magnetic properties. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据