4.6 Article

Layering mechanism of MDP-Ca salt produced in demineralization of enamel and dentin apatite

期刊

DENTAL MATERIALS
卷 33, 期 1, 页码 23-32

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.dental.2016.09.037

关键词

One-step adhesive; Decalcification; MDP-Ca salt; P-31 NMR; X-ray diffraction

资金

  1. Developmental Scientific Research from the Ministry of Education, Science and Culture in Japan [25462969]
  2. Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo
  3. Grants-in-Aid for Scientific Research [25462969] Funding Source: KAKEN

向作者/读者索取更多资源

Objective. The 10-methacryloyloxydecyl dihydrogen phosphate (MDP) (EX adhesives)-based one-step self-etch adhesives have become widely utilized due to their simplified application procedures. The aim of this study was to determine the type of the molecular species of calcium salts of MDP (MDP-Ca salts) that form a layered structure and to understand the layering mechanism of MDP-Ca salts. Methods. The EX adhesives were prepared by varying the amounts of MDP (25.6, 49.9, 80.5 and 116.1 mg) added in 1 g of the EX adhesive. Enamel and dentin reactant residues were obtained after the reaction of each EX adhesive to enamel or dentin particles for 30 s. The chemical analyses of both reactant residues were then performed. Results. The molecular species of MDP-Ca salts that form a layered structure were determined as mono-calcium salt (MCS-MD) and di-calcium salts of the MDP dimer (DCS-MD). The dentin sample showed two types of characteristic XRD peaks assigned to the layer structure, since the dentin produced DCS-MD along with MCS-MD in contrast to the enamel sample. A mono-calcium salt of the MDP monomer (MCS-MM), a predominant molecular species, was not contributed to a layered-structure formation, since the intensities of characteristic XRD peaks are limited by the production of DCS-MD and MCS-MD. Significance. The self-assembled layering of MCS-MD and DCS-MD is associated by a hydrophobic bond between two 10-methylene groups in MCS-MD and DCS-MD. The MCS-MD may form a more tightly-packed layered structure than DCS-MD by the hydrogen bonded interaction between hydroxy groups bonded to each phosphorous atom. (C) 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据