4.6 Article

Thermal field theory of bosonic gases with finite-range effective interaction

期刊

PHYSICAL REVIEW A
卷 95, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.95.033627

关键词

-

资金

  1. Ministero Istruzione Universita Ricerca (PRIN Project Collective Quantum Phenomena: from Strongly-Correlated Systems to Quantum Simulators)

向作者/读者索取更多资源

We study a dilute and ultracold Bose gas of interacting atoms by using an effective field theory which takes into account the finite-range effects of the interatomic potential. Within the formalism of functional integration from the grand canonical partition function, we derive beyond-mean-field analytical results which depend on both the scattering length and the effective range of the interaction. In particular, we calculate the equation of state of the bosonic system as a function of these interaction parameters both at zero and finite temperature including one-loop Gaussian fluctuation. In the case of zero-range effective interaction, we explicitly show that, due to quantum fluctuations, the bosonic system is thermodynamically stable only for very small values of the gas parameter. We find that a positive effective range above a critical threshold is necessary to remove the thermodynamical instability of the uniform configuration. Remarkably, also for relatively large values of the gas parameter, our finite-range results are in quite good agreement with recent zero-temperature Monte Carlo calculations obtained with hard-sphere bosons.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据