4.6 Article

Disentangling contributions of point and line defects in the Raman spectra of graphene-related materials

期刊

2D MATERIALS
卷 4, 期 2, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/2053-1583/aa5e77

关键词

graphene; Raman; defects

资金

  1. CNPq [307067/2015-7, 460045/2014-8, 552124/2011-7]
  2. CAPES
  3. FAPEMIG
  4. FAPERJ
  5. INCT-Nanomateriais de Carbono and Inmetro
  6. European Union [603488]

向作者/读者索取更多资源

The transition from graphene to a fully disordered sp2 carbon material can be idealized by either cutting graphene into smaller and smaller pieces, or adding more and more point defects. In other words, from the dimensionality standpoint, defects in two-dimensional (2D) systems can be either one-(1D) or zero-dimensional (0D). From an application point of view, both in terms of bottom-up as well as top-down approaches, the discrimination between these two structural disorder in two-dimensional systems is urgently desired. In graphene, both types of defects produce changes in the Raman spectrum, but identifying separately the contribution from each defect-type has not yet been achieved. Here we show that a diagram can be built for disentangling contributions of pointlike and line-like defects to the Raman spectra of graphene-related materials embracing, from the topology point of view, all possible structures from perfect to fully disordered sp2 bonded carbons. Two sets of graphene-related samples, produced by well-established protocols that generate either 0D or 1D defects in a controlled way, are analysed with our model and used to parameterize the limiting values of the phase space. We then discuss the limitations and apply our new methodology to analyse the structure of two-dimensional nanocarbons generated from renewable gas, used to produce inks and conducting coatings.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据