4.6 Article

Design of a Unique Energy-Band Structure and Morphology in a Carbon Nitride Photocatalyst for Improved Charge Separation and Hydrogen Production

期刊

ACS SUSTAINABLE CHEMISTRY & ENGINEERING
卷 6, 期 1, 页码 519-530

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acssuschemeng.7b02807

关键词

Carbon nitride; Rational materials design; Photocatalysis; Supramolecular chemistry

向作者/读者索取更多资源

We report the facile and environmental-friendly synthesis of an efficient carbon nitride photocatalyst for hydrogen production and dyes degradation by using a unique supramolecular assembly with an element gradient as the reactant. The element gradient is acquired through the selective removal of barbituric acid from the surface of a supramolecular assembly that comprises barbituric acid, melamine, and cyanucric acid, using hydrochloric acid as a surface modifier. The tailored design of the supramolecular aggregate results in inner and outer parts, which have carbon rich and carbon-poor domains, respectively. Structural and optical investigations of the new assemblies reveal that the hydrogen chlorine interaction generates a carbon gradient through the starting supramolecular assembly and to a better packing and structural alignment of the supramolecular units. Detailed X-ray photoelectron spectroscopy and photophysical studies of the final carbon nitride-like materials after calcination at 550 degrees C indicate that the element gradient across the starting precursor directly projects on the final carbon nitride chemical and element composition, as well as on its optical and photocatalytic properties. The spatial arrangement of the starting monomers leads to the formation of a unique energy-level structure in the final material, which is intended to improve the efficiency of charge separation under illumination and, thereby, result in a strong enhancement of photocatalytic activity toward a high hydrogen production and fast dyes degradation. This work provides new opportunities for the rational design of carbon nitride and other metal-free materials with unique and controllable chemical, optical, and catalytic properties for sustainable energy related applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据