4.6 Article

Base-Catalyzed Depolymerization of Solid Lignin-Rich Streams Enables Microbial Conversion

期刊

ACS SUSTAINABLE CHEMISTRY & ENGINEERING
卷 5, 期 9, 页码 8171-8180

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acssuschemeng.7b01818

关键词

Lignin liquor; Biological conversion; Base-catalyzed depolymerization; Lignin monomers; Muconic acid

资金

  1. U.S. Department of Energy Bioenergy Technologies Office (DOE-BETO) [DE-AC36-08GO28308]
  2. U.S. Department of Energy's National Nuclear Security Administration [DE-NA0003525]
  3. U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231]
  4. NNF Center for Biosustainability [Synthetic Biology Tools for Yeast] Funding Source: researchfish
  5. Novo Nordisk Fonden [NNF10CC1016517] Funding Source: researchfish

向作者/读者索取更多资源

Lignin valorization offers significant potential to enhance the economic viability of lignocellulosic biorefineries. However, because of its heterogeneous and recalcitrant nature, conversion of lignin to value-added coproducts remains a considerable technical challenge. In this study, we employ base-catalyzed depolymerization (BCD) using a process-relevant solid lignin stream produced via deacetylation, mechanical refining, and enzymatic hydrolysis to enable biological lignin conversion. BCD was conducted with the solid lignin substrate over a range of temperatures at two NaOH concentrations, and the results demonstrate that the lignin can be partially extracted and saponified at temperatures as low as 60 degrees C. At 120 degrees C and 2% NaOH, the high extent of lignin solubility was accompanied by a considerable decrease in the lignin average molecular weight and the release of lignin-derived monomers including hydroxycinnamic acids. BCD liquors were tested for microbial growth using seven aromatic-catabolizing bacteria and two yeasts. Three organisms (Pseudomonas putida KT2440, Rhodotorula mucilaginosa, and Corynebacterium glutamicum) tolerate high BCD liquor concentrations (up to 90% v/v) and rapidly consume the main lignin derived monomers, resulting in lignin conversion of up to 15%. Furthermore, as a proof of concept, muconic acid production from a representative lignin BCD liquor was demonstrated with an engineered P. putida KT2440 strain. These results highlight the potential for a mild lignin depolymerization process to enhance the microbial conversion of solid lignin-rich biorefinery streams.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据