4.6 Article

Lactate produced during labor modulates uterine inflammation via GPR81 ( HCA1)

期刊

出版社

MOSBY-ELSEVIER
DOI: 10.1016/j.ajog.2016.09.072

关键词

CCL2; chemokine; chorioamnionitis; cytokine; endotoxin; GPR81; inflammation; interleukin; interleukin-1; interleukin-6; labor; lactate; lactic acid; lipopolysaccharide; PGHS2; mouse; myometrium; parturition; preterm labor; pyruvate; spontaneous labor

资金

  1. Global Alliance for the Prevention of Prematurity and Stillbirth
  2. initiative of Seattle Children's
  3. Canadian Institutes of Health Research (CIHR)
  4. Vanier Canada Graduate scholarship
  5. Suzanne Veronneau-Troutman Funds associated
  6. Department of Ophthalmology of Universite de Montreal
  7. Vision Research Network
  8. FRQS
  9. CIHR

向作者/读者索取更多资源

BACKGROUND: Uterine inflammatory processes trigger prolabor pathways and orchestrate on-time labor onset. Although essential for successful labor, inflammation needs to be regulated to avoid uncontrolled amplification and resolve postpartum. During labor, myometrial smooth muscle cells generate ATP mainly via anaerobic glycolysis, resulting in accumulation of lactate. Aside from its metabolic function, lactate has been shown to activate a G protein-coupled receptor, GPR81, reported to regulate inflammation. We therefore hypothesize that lactate produced during labor may act via GPR81 in the uterus to exert in a feedback manner antiinflammatory effects, to resolve or mitigate inflammation. OBJECTIVE: We sought to investigate the role of lactate produced during labor and its receptor, GPR81, in regulating inflammation in the uterus. STUDY DESIGN: We investigated the expression of GPR81 in the uterus and the pharmacological role of lactate acting via GPR81 during labor, using shRNA-GPR81 and GPR81(-/-) mice. RESULTS: (1) Uterine lactate levels increased substantially from 2 to 9 mmol/L during labor. (2) Immunohistological analysis revealed expression of GPR81 in the uterus with high expression in myometrium. (3) GPR81 expression increased during gestation, and peaked near labor. (4) In primary myometrial smooth muscle cell and ex vivo uteri from wild-type mice, lactate decreased interleukin-1b-induced transcription of key proinflammatory ll1b, ll6, Ccl2, and Pghs2; suppressive effects of lactate were not observed in cells and tissues from GPR81(-/-) mice. (5) Conversely, proinflammatory gene expression was augmented in the uterus at term in GPR81(-/-) mice and wild-type mice treated intrauterine with lentiviral-encoded shRNA-GPR81; GPR81 silencing also induced proinflammatory gene transcription in the uterus when labor was induced by endotoxin (lipopolysaccharide). (6) Importantly, administration to pregnant mice of a metabolically stable specific GPR81 agonist, 3,5-dihydroxybenzoic acid, decreased endotoxin-induced uterine inflammation, preterm birth, and associated neonatal mortality. CONCLUSION: Collectively, our data uncover a novel link between the anaerobic glycolysis and the control of uterine inflammation wherein the high levels of lactate produced during labor act on uterine GPR81 to downregulate key proinflammatory genes. This discovery may represent a novel feedback mechanism to regulate inflammation during labor, and conveys a potential rationale for the use of GPR81 agonists to attenuate inflammation and resulting preterm birth.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据