4.6 Article

Cytoprotective Drug-Tissue Plasminogen Activator Protease Interaction Assays: Screening of Two Novel Cytoprotective Chromones

期刊

TRANSLATIONAL STROKE RESEARCH
卷 8, 期 5, 页码 494-506

出版社

SPRINGER
DOI: 10.1007/s12975-017-0533-7

关键词

Drug development; Embolic stroke; Thrombolysis; Protease; Recommendations; Ischemic stroke

资金

  1. U01 Translational Research grant [NS060685]

向作者/读者索取更多资源

Tissue plasminogen activator (tPA) is currently used in combination with endovascular procedures to enhance recanalization and cerebral reperfusion and is also currently administered as standard-of-care thrombolytic therapy to patients within 3-4.5 h of an ischemic stroke. Since tPA is not neuroprotective or cytoprotective, adjuvant therapy with a neuroprotective or an optimized cytoprotective compound is required to provide the best care to stroke victims to maximally promote clinical recovery. In this article, we describe the use of a sensitive standardized protease assay with CH3SO2-D-hexahydrotyrosine-Gly-Arg-p-nitroanilideaEuro cent AcOH, a chromogenic protease substrate that is cleaved to 4-nitroaniline (p-nitroaniline) and measured spectrophotometrically at 405 nm (OD405 nm), and how the assay can be used as an effective screening assay to study drug-tPA interactions. While we focus on two compounds of interest in our drug development pipeline, the assay is broadly applicable to all small molecule neuroprotective or cytoprotective compounds currently being discovered and developed worldwide. In this present study, we found that the specific tPA inhibitor, plasminogen activator inhibitor-1 (PAI-1; 0.25 mu M), significantly (p < 0.0001) inhibited 4-nitroaniline release, by 97.74% during the 10-min duration of the assay, which is indicative of tPA protease inhibition. In addition, two lead chromone cytoprotective candidates, 2-(3',4',5'-trihydroxyphenyl)chromen-4-one (3',4',5'-trihydroxyflavone) (CSMC-19) and 3-hydroxy-2-[3-hydroxy-4-(pyrrolidin-1-yl)phenyl]benzo[h]chromen-4-one (CSMC-140), also significantly (p < 0.05) reduced 4-nitroaniline accumulation, but to a lesser extent. The reduction was 68 and 45%, respectively, at 10 mu M, and extrapolated IC50 values were 4.37 and > 10 mu M for CSMC-19 and CSMC-140, respectively. Using bonafide 4-nitroaniline, we then demonstrated that the reduction of 4-nitroaniline detection was not due to drug-4-nitroaniline quenching of signal detection at OD405 nm. In conclusion, the results suggest that high concentrations of both cytoprotectives reduced 4-nitroaniline production in vitro, but the inhibition only occurs with concentrations 104-1025-fold that of EC50 values in an efficacy assay. Thus, CSMC-19 and CSMC-140 should be further developed and evaluated in embolic stroke models in the absence or presence of a thrombolytic. If necessary, they could be administered once effective tPA thrombolysis has been confirmed to avoid the possibility that the chromone will reduce the efficacy of tPA in patients. Stroke investigator developing new cytoprotective small molecules should consider adding this sensitive assay to their development and screening repertoire to assess possible drug-tPA interactions in vitro as a de-risking step.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据