4.7 Article

Palladium Nanoparticles-Based Fluorescence Resonance Energy Transfer Aptasensor for Highly Sensitive Detection of Aflatoxin M1 in Milk

期刊

TOXINS
卷 9, 期 10, 页码 -

出版社

MDPI AG
DOI: 10.3390/toxins9100318

关键词

aflatoxin M-1; palladium nanoparticles; aptasensor; fluorescence resonance energy transfer

资金

  1. Natural Science Foundation of Hubei Province [ZRMS2017001647]
  2. National Key Research and Development Program of China [2016YFE0119900]

向作者/读者索取更多资源

A highly sensitive aptasensor for aflatoxin M-1 (AFM(1)) detection was constructed based on fluorescence resonance energy transfer (FRET) between 5-carboxyfluorescein (FAM) and palladium nanoparticles (PdNPs). PdNPs (33 nm) were synthesized through a seed-mediated growth method and exhibited broad and strong absorption in the whole ultraviolet-visible (UV-Vis) range. The strong coordination interaction between nitrogen functional groups of the AFM(1) aptamer and PdNPs brought FAM and PdNPs in close proximity, which resulted in the fluorescence quenching of FAM to a maximum extent of 95%. The non-specific fluorescence quenching caused by PdNPs towards fluorescein was negligible. After the introduction of AFM(1) into the FAM-AFM(1) aptamer-PdNPs FRET system, the AFM(1) aptamer preferentially combined with AFM(1) accompanied by conformational change, which greatly weakened the coordination interaction between the AFM(1) aptamer and PdNPs. Thus, fluorescence recovery of FAM was observed and a linear relationship between the fluorescence recovery and the concentration of AFM(1) was obtained in the range of 5-150 pg/mL in aqueous buffer with the detection limit of 1.5 pg/mL. AFM(1) detection was also realized in milk samples with a linear detection range from 6 pg/mL to 150 pg/mL. The highly sensitive FRET aptasensor with simple configuration shows promising prospect in detecting a variety of food contaminants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据