4.3 Article

Primary stability and viscoelastic displacement of mini-implant system under loading

期刊

CLINICAL BIOMECHANICS
卷 41, 期 -, 页码 28-33

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.clinbiomech.2016.11.004

关键词

Mini-implant; Diameter; Orthodontic loading; Creep; Bone mineral density; Thickness

资金

  1. Delta Dental Foundation of Michigan
  2. Delta Dental Foundation of Ohio
  3. Delta Dental Foundation of Indiana through the Dental Master's Thesis Award Program

向作者/读者索取更多资源

Background: The objectives of the current study were to examine the effects of mini-implant diameters on 1) primary stability before bone properties are changed by active peri-implant bone remodeling and 2) the time-dependent displacement of mini-implant systems in bone under a functional radial loading and their associations with bone mineral density. Methods: Twenty one, 8 mm length mini-implants (7 each for 1.4 mm, 1.6 mm, and 2 mm diameters) were placed in mandibular sections of human cadavers (4 males and 3 females, average 69.7 (SD 13.1) years of age). Displacement of the mini-implant in wet bone was assessed during initial and subsequent continuous radial loading of 2 N in the mediolateral direction for 2 h. Mean, standard deviation and coefficient of variation of peri-implant bone mineral density were obtained using histograms of cone-beam computed tomography attenuation values. The cortical thickness along with the miniscrew site was also measured. Findings: The primary stability and displacement of mini-implants in bone were not significantly different between the 3 diameter groups (p > 0.147, n = 21). Moderate positive correlations of time-dependent viscoelastic displacement (creep) were found with bone mineral density variability independent of the mini-implant diameters (p > 0.11). Interpretation: The post-implantation displacements of mini-implant suggested that the orthodontic treatment loading can develop micromotion between the mini-implant and surrounding bone leading to reduction of its primary stability. Current findings also provide an insight that peri-implant bone mineral density variability plays an important role in controlling displacement of the mini-implant, which determine its stability during early and prolonged orthodontic treatment loading periods. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据