4.7 Article

Convolutional Recurrent Neural Networks for Hyperspectral Data Classification

期刊

REMOTE SENSING
卷 9, 期 3, 页码 -

出版社

MDPI
DOI: 10.3390/rs9030298

关键词

deep learning; convolutional neural network; recurrent neural network; convolutional recurrent neural network; hyperspectral image

资金

  1. Division Of Earth Sciences
  2. Directorate For Geosciences [1339015] Funding Source: National Science Foundation

向作者/读者索取更多资源

Deep neural networks, such as convolutional neural networks (CNN) and stacked autoencoders, have recently been successfully used to extract deep features for hyperspectral data classification. Recurrent neural networks (RNN) are another type of neural networks, which are widely used for sequence analysis because they are constructed to extract contextual information from sequences by modeling the dependencies between different time steps. In this paper, we study the ability of RNN for hyperspectral data classification by extracting the contextual information from the data. Specifically, hyperspectral data are treated as spectral sequences, and an RNN is used to model the dependencies between different spectral bands. In addition, we propose to use a convolutional recurrent neural network (CRNN) to learn more discriminative features for hyperspectral data classification. In CRNN, a few convolutional layers are first learned to extract middle-level and locally-invariant features from the input data, and the following recurrent layers are then employed to further extract spectrally-contextual information from the features generated by the convolutional layers. Experimental results on real hyperspectral datasets show that our method provides better classification performance compared to traditional methods and other state-of-the-art deep learning methods for hyperspectral data classification.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据