4.8 Article

Size-Tuning of WSe2 Flakes for High Efficiency Inverted Organic Solar Cells

期刊

ACS NANO
卷 11, 期 4, 页码 3517-3531

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.7b00323

关键词

tungsten diselenide; liquid-phase exfoliation; sedimentation-based separation; inverted organic solar cell; efficiency enhancement

资金

  1. European Union [696656]

向作者/读者索取更多资源

The development of large-scale production methods of two-dimensional (2D) crystals, with on-demand control of the area and thickness, is mandatory to fulfill the potential applications of such materials for photovoltaics. Inverted bulk heterojunction (BHJ) organic solar cell (OSC), which exploits a polymer fullerene binary blend as the active material, is one potentially important application area for 2D crystals. A large ongoing effort is indeed currently devoted to the introduction of 2D crystals in the binary blend to improve the charge transport properties. While it is expected that the nanoscale domains size of the different components of the blend will significantly impact the performance of the OSC, to date, there is no evidence of quantitative information on the interplay between 2D crystals and fullerene domains size. Here, we demonstrate that by matching the size of WSe2 few-layer 2D crystals, produced by liquid-phase exfoliation, with that of the PC71BM fullerene domain in BHJ OSCs, we obtain power conversion efficiencies (PCEs) of similar to 9.3%, reaching a 15% improvement with respect to standard binary devices (PCE = 8.10%), i.e., without the addition of WSe2 flakes. This is the highest ever reported PCE for 2D material-based OSCs, obtained thanks to the enhanced exciton generation and exciton dissociation at the WSe2 fullerene interface and also electron extraction to the back metal contact as a consequence of a balanced charge carriers mobility. These results push forward the implementation of transition-metal dichalcogenides to boost the performance of BHJ OSCs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据