4.7 Article

Degradation of polystyrene and selected analogues by biological Fenton chemistry approaches: Opportunities and limitations

期刊

CHEMOSPHERE
卷 173, 期 -, 页码 520-528

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2017.01.089

关键词

Fungi; Biodegradation; Polymers; Polystyrene; Fenton chemistry; Model compounds

资金

  1. European Commission [312100]
  2. Helmholtz Association of German Research Centres

向作者/读者索取更多资源

Conventional synthetic polymers typically are highly resistant to microbial degradation, which is beneficial for their intended purpose but highly detrimental when such polymers get lost into the environment. Polystyrene is one of the most widespread of such polymers, but knowledge about its biological degradability is scarce. In this study, we investigated the ability of the polymer-degrading brown-rot fungus Gloeophyllum trabeum to attack polystyrene via Fenton chemistry driven by the redox-cycling of quinones. Indications of superficial oxidation were observed, but the overall effects on the polymer were weak. To assess factors constraining biodegradation of polystyrene, the small water-soluble model compounds ethylbenzene and isopropylbenzene (cumene) were also subjected to biodegradation by G. trabeum. Likewise, ethylbenzene sulfonate, cumene sulfonate and the dimer 1,3-diphenylbutane sulfonate were used as model compounds for comparison with polystyrene sulfonate, which G. trabeum can substantially depolymerise. All model compounds but cumene were degraded by G. trabeum and yielded a large variety of oxidised metabolites, suggesting that both the very poor bioavailability of polystyrene and its inert basic structure play important roles constraining biodegradability via biologically driven Fenton chemistry. (c) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据