4.7 Article

Remote Sensing of Spatiotemporal Changes in Wetland Geomorphology Based on Type 2 Fuzzy Sets: A Case Study of Beidagang Wetland from 1975 to 2015

期刊

REMOTE SENSING
卷 9, 期 7, 页码 -

出版社

MDPI
DOI: 10.3390/rs9070683

关键词

Landsat; wetland; fuzzy clustering; spatiotemporal changes; type-2 fuzzy set

资金

  1. China Postdoctoral Science Foundation [M601181]
  2. Tianjin Normal University Doctoral Foundation [52XB1501, 52XB1502]
  3. National Natural Science Foundation of China [41231170, 41501406]
  4. Tianjin Natural Science Foundation [17JCZDJC39700]
  5. National Key Basic Research Programme [2013CB733402]

向作者/读者索取更多资源

Few studies have considered the spatiotemporal changes in wetland land cover based on type 2 fuzzy sets using long-term series of remotely sensed data. This paper presents an improved interval type 2 fuzzy c-means (IT2FCM*) approach to analyse the spatial and temporal changes in the geomorphology of the Beidagang wetland in North China from 1975 to 2015 based on long-term Landsat data. Unlike traditional type 1 fuzzy c-means methods, the IT2FCM* algorithm based on interval type-2 fuzzy set has an ability to better handle the spectral uncertainty. Four indexes were adopted to validate the separability of classes with the IT2FCM* algorithm. These four validity indexes showed that IT2FCM* obtained better results than traditional methods. Additionally, the accuracy of the classification results was assessed based on the confusion matrix and kappa coefficient, which were high for the analysis of wetland landscape changes. Based on the analysis of separability of classes with the IT2FCM* algorithm using four validity indexes, the classification results, and the membership value images, the long-term series of satellite datasets were processed using the IT2FCM* method, and the study area was classified into six classes. Because water resources and vegetation are two key wetland components, the water resource dynamics and vegetation dynamics, based on the normalized difference vegetation index (NDVI), were analysed in detail according to the spatiotemporal classification results. The results show that the changes in vegetation types have historically been associated with water resource variations and that water resources play an important role in the evolution of vegetation types.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据