4.7 Article

Estimation of Surface NO2 Volume Mixing Ratio in Four Metropolitan Cities in Korea Using Multiple Regression Models with OMI and AIRS Data

期刊

REMOTE SENSING
卷 9, 期 6, 页码 -

出版社

MDPI
DOI: 10.3390/rs9060627

关键词

surface NO2 volume mixing ratio; NO2; OMI; multiple regression

资金

  1. Korea Ministry of Environment (MOE) as K-COSEM Research Program
  2. BK21 plus Project of the Graduate School of Earth Environmental Hazard System

向作者/读者索取更多资源

Surface NO2 volume mixing ratio (VMR) at a specific time (13:45 Local time) (NO2 VMRST) and monthly mean surface NO2 VMR (NO2 VMRM) are estimated for the first time using three regression models with Ozone Monitoring Instrument (OMI) data in four metropolitan cities in South Korea: Seoul, Gyeonggi, Daejeon, and Gwangju. Relationships between the surface NO2 VMR obtained from in situ measurements (NO2 VMRIn-situ) and tropospheric NO2 vertical column density obtained from OMI from 2007 to 2013 were developed using regression models that also include boundary layer height (BLH) from Atmospheric Infrared Sounder (AIRS) and surface pressure, temperature, dew point, and wind speed and direction. The performance of the regression models is evaluated via comparison with the NO2 VMRIn-situ for two validation years (2006 and 2014). Of the three regression models, a multiple regression model shows the best performance in estimating NO2 VMRST and NO2 VMRM. In the validation period, the average correlation coefficient (R), slope, mean bias (MB), mean absolute error (MAE), root mean square error (RMSE), and percent difference between NO2 VMRIn-situ and NO2 VMRST estimated by the multiple regression model are 0.66, 0.41, -1.36 ppbv, 6.89 ppbv, 8.98 ppbv, and 31.50%, respectively, while the average corresponding values for the other two models are 0.75, 0.41, -1.40 ppbv, 3.59 ppbv, 4.72 ppbv, and 16.59%, respectively. All three models have similar performance for NO2 VMRM, with average R, slope, MB, MAE, RMSE, and percent difference between NO2 VMRIn-situ and NO2 VMRM of 0.74, 0.49, -1.90 ppbv, 3.93 ppbv, 5.05 ppbv, and 18.76%, respectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据