4.7 Article

Modelling TiO2 formation in a stagnation flame using method of moments with interpolative closure

期刊

COMBUSTION AND FLAME
卷 178, 期 -, 页码 135-147

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.combustflame.2017.01.005

关键词

Titanium dioxide; Nanoparticle; TTIP; Particle dynamics; Method of moments; Stagnation flame

资金

  1. National Research Foundation (NRF)
  2. Prime Minister's Office, Singapore
  3. CMCL

向作者/读者索取更多资源

The stagnation flame synthesis of titanium dioxide nanoparticles from titanium tetraisopropoxide (TTIP) is modelled based on a simple one-step decomposition mechanism and one-dimensional stagnation flow. The particle model, which accounts for nucleation, surface growth, and coagulation, is fully-coupled to the flow and the gas phase chemistry and solved using the method of moments with interpolative closure (MoMIC). The model assumes no formation of aggregates considering the high temperature of the flame. In order to account for the free-jet region in the flow, the computational distance, H = 1.27 cm, is chosen based on the observed flame location in the experiment (for nozzle-stagnation distance, L = 3.4 cm). The model shows a good agreement with experimentally measured mobility particle size for stationary stagnation surface with varying TTIP loading, although the particle geometric standard deviation, GSD, is underpredicted for high TTIP loading. The particle size is predicted to be sensitive to the sampling location near the stagnation surface in the modelled flame. The sensitivity to the sampling location is found to increase with increasing precursor loading and stagnation temperature. Lastly, the effect of surface growth is evaluated by comparing the result with an alternative reaction model. It is found that surface growth plays an important role in the initial stage of particle growth which, if neglected, results in severe underprediction of particle size and overprediction of particle GSD. (C) 2017 Published by Elsevier Inc. on behalf of The Combustion Institute.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据