4.7 Article

Remote Sensing of Hydrological Changes in Tian-e-Zhou Oxbow Lake, an Ungauged Area of the Yangtze River Basin

期刊

REMOTE SENSING
卷 10, 期 1, 页码 -

出版社

MDPI AG
DOI: 10.3390/rs10010027

关键词

remote sensing; ungauged area; oxbow lake; hydrologic change; Yangtze River Basin

资金

  1. National Nature Science Foundation of China [41571202, 41171426, 41331174]

向作者/读者索取更多资源

The hydrological pattern changes have a great influence on the wetland environment. However, some important wetland areas often lack historical observations due to economic and physical conditions. The Tian-e-Zhou oxbow lake wetland is an important habitat for two endangered species and also has very little historical hydrological data. Remote sensing images can be used to explore the historical water area fluctuation of lakes. In addition, remote sensing can also be used to obtain historical water levels based on the water boundary elevation integrated with a topographic data (WBET) method or the level-surface area relationship curve (LRC) method. In order to minimize the uncertainty of the derived results, both methods were introduced in the extraction of the water level of Tian-e-Zhou during 1992-2015. The results reveal that the hydrological regime of the oxbow lake has experienced a significant change after the Shatanzi Levee construction in 1998. With the impact of the levee, the mean annual water surface area of the lake was reduced by 5.8 km(2) during the flood season, but, during the non-flood season, it was increased by 1.35 km(2). For the same period, the water level of the lake during the flood season also showed a 1.47 m (WBET method) or 3.21 m (LRC method) decrease. The mean annual water level increased by 1.12 m (WBET method) or 0.75 m (LRC method). Both results had a good accuracy with RMSE (root-mean-square errors) of less than 0.4 m. Furthermore, the water level differences between the Yangtze River channel and the oxbow lake increased by at least 0.5 m. It is found that the hydrological pattern of the oxbow lake changed significantly after the levee construction, which could bring some disadvantages to the habitats of the two endangered species.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据