4.8 Article

Bimetal-organic frameworks/polymer core-shell nanofibers derived heteroatom-doped carbon materials as electrocatalysts for oxygen reduction reaction

期刊

CARBON
卷 114, 期 -, 页码 250-260

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2016.12.016

关键词

Electrospinning; Bimetal organic frameworks; Core-shell nanofibers; Heteroatom-doped carbon materials; ORR electrocatalysts

向作者/读者索取更多资源

In this work, Zn-Co-ZIF-n(shell)/PAN(core) nanofibers were well-designed and prepared through bimetal zeolitic imidazolate frameworks (ZIFs) grown on the surface of 2-Methylimidazole/Polyacrylonitrile (MIM/PAN).electrospun nanofibers. After carbonization of Zn-Co-ZIF-n/PAN nanofibers (n was the molar ratio of Zn/Co before carbonization), the core layer was converted to nitrogen-doped carbon nanofibers (NCNFs) and the shell layer was converted to Zn/Co bimetal nanoparticles coated with graphitic carbon layer (Zn/Co@C). It was found that Zn/Co@C-NCNFs are featured with hierarchical network structure and high surface area. Further doped by nitrogen species and embedded by Zn/Co bimetal nanoparticles, it exhibited excellent electrocatalytic performance for oxygen reduction reaction (ORR), better than the reference samples. By further investigating the electrocatalytic performance, the optimized sample Zn/Co@C-NCNFs (0.50) derived from Zn-Co-ZIF-0.50/PAN at 800 degrees C carbonization exhibited excellent electrocatalytic activity (the onset and half-wave potentials were -0.099 V and -0.20 V vs. Ag/AgCl, respectively and nearly four electron selectivity (3.69)). Moreover, its methanol tolerance and duration stability was better than that of the commercial 20 wt% Pt/C. It provides an effective strategy to design non-precious metal electrocatalysts from the Zn-Co-ZIF-n/PAN nanofibers or other MOFs/polymer nanofibers for ORR in fuel cells. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据