4.7 Article

Acetal-Linked Paclitaxel Polymeric Prodrug Based on Functionalized mPEG-PCL Diblock Polymer for pH-Triggered Drug Delivery

期刊

POLYMERS
卷 9, 期 12, 页码 -

出版社

MDPI
DOI: 10.3390/polym9120698

关键词

prodrug; polymer micelles; pH-sensitive; acetal; paclitaxel

资金

  1. National Natural Science Foundation of China [81603053, 81502927]
  2. Hainan ST Project [KYYS-2015-38]
  3. Scientific Research General Project of Liaoning Provincial Department of Education [201610163L29]

向作者/读者索取更多资源

The differences in micro-environment between cancer cells and the normal ones offer the possibility to develop stimuli-responsive drug-delivery systems for overcoming the drawbacks in the clinical use of anticancer drugs, such as paclitaxel, doxorubicin, and etc. Hence, we developed a novel endosomal pH-sensitive paclitaxel (PTX) prodrug micelles based on functionalized poly(ethylene glycol)-poly(epsilon-caprolactone) (mPEG-PCL) diblock polymer with an acid-cleavable acetal (Ace) linkage (mPEG-PCL-Ace-PTX). The mPEG-PCL-Ace-PTX5 with a high drug content of 23.5 wt % was self-assembled in phosphate buffer (pH 7.4, 10 mM) into nanosized micelles with an average diameter of 68.5 nm. The in vitro release studies demonstrated that mPEG-PCL-Ace-PTX5 micelles was highly pH-sensitive, in which 16.8%, 32.8%, and 48.2% of parent free PTX was released from mPEG-PCL-Ace-PTX5 micelles in 48 h at pH 7.4, 6.0, and 5.0, respectively. Thiazolyl Blue Tetrazolium Bromide (MTT) assays suggested that the pH-sensitive PTX prodrug micelles displayed higher therapeutic efficacy against MCF-7 cells compared with free PTX. Therefore, the PTX prodrug micelles with acetal bond may offer a promising strategy for cancer therapy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据