4.7 Article

Effect of Nanofibrillated Cellulose Content on the Temperature and Near Infrared Responses of Polyvinyl Butyral Nanofibers-Containing Bilayer Hydrogel System

期刊

POLYMERS
卷 9, 期 7, 页码 -

出版社

MDPI AG
DOI: 10.3390/polym9070270

关键词

bilayer hydrogel; multiple responses; electrospinning; nanofibrillated cellulose

资金

  1. Cooperative Innovation Platform of National Oil Shale Exploration Development and Research
  2. National Natural Science Foundation [5167050531]

向作者/读者索取更多资源

A novel kind of nanofibrillated cellulose (NFC) reinforced polyvinyl butyral (PVB) nanofibers-containing bilayer hydrogel system was successfully fabricated via the combination of a one-step, in-situ, free radical polymerization and electrospinning. The hydrogel owned high mechanical strength, thermoresponsive, and near infrared bending/unbending properties. The cross-linking density of hydrogels enhanced along with the increase of NFC content. The addition of NFC and PVB nanofibers presented tiny influence on the variation of chemical bond and volume phase transition temperature. The combination between NFC and PVB nanofibers enhanced the mechanical strength and decreased the strain value, which built the base for high bonding strength of two layers and efficient thermoresponsive and near infrared responses. With the increase of NFC content, the bending degree became smaller. The bilayer hydrogel dimensions affected the deformation degree. Bilayer hydrogels with different NFC content own different deformation abilities, which can be designed as different parts of soft actuators and provide superior performance to satisfy various practical application demands.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据