4.7 Article

Insights into electrochemical CO2 reduction on tin oxides from first-principles calculations

期刊

GREEN ENERGY & ENVIRONMENT
卷 2, 期 2, 页码 168-171

出版社

KEAI PUBLISHING LTD
DOI: 10.1016/j.gee.2017.02.005

关键词

CO2 electroreduction; Tin oxides; Strain effect; Scaling relations; Density functional theory

资金

  1. American Chemical Society Petroleum Research Fund [ACS PRF 55581-DNI5]
  2. Institute for Critical Technology and Applied Science [ICTAS-J0663175]
  3. NSF CBET Catalysis and Biocatalysis Program [CBET-1604984]

向作者/读者索取更多资源

Density functional theory calculations were used to unravel the mechanism of CO2 electroreduction on SnOx surfaces. Under highly reducing conditions (< -0.6 V vs. RHE), the SnO(101) surface with oxygen vacancies is likely the active phase for CO2 reduction. We showed that the proton-electron transfer to adsorbed *CO2 forming *OCHO, a key intermediate for producing HCOOH, is energetically more favorable than the formation of *COOH, justifying the selectivity trends observed on Sn-based electrocatalysts. With linear scaling relations, we propose the free formation energy of *CO2 at the oxygen vacancy as the reactivity descriptor. By engineering the strain of the SnO(101) surface, the selectivity towards HCOOH can be further optimized at reduced overpotentials. (C) 2017, Institute of Process Engineering, Chinese Academy of Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据