4.7 Review

Regulation of microglial activation in stroke

期刊

ACTA PHARMACOLOGICA SINICA
卷 38, 期 4, 页码 445-458

出版社

ACTA PHARMACOLOGICA SINICA
DOI: 10.1038/aps.2016.162

关键词

cerebral ischemia; microglia; macrophage; neuroinflammation; cytokines; microglia/neuron interaction; brain

资金

  1. National Natural Science Foundation of China [81371295]

向作者/读者索取更多资源

When ischemic stroke occurs, oxygen and energy depletion triggers a cascade of events, including inflammatory responses, glutamate excitotoxicity, oxidative stress, and apoptosis that result in a profound brain injury. The inflammatory response contributes to secondary neuronal damage, which exerts a substantial impact on both acute ischemic injury and the chronic recovery of the brain function. Microglia are the resident immune cells in the brain that constantly monitor brain microenvironment under normal conditions. Once ischemia occurs, microglia are activated to produce both detrimental and neuroprotective mediators, and the balance of the two counteracting mediators determines the fate of injured neurons. The activation of microglia is defined as either classic (M1) or alternative (M2): M1 microglia secrete pro-inflammatory cytokines (TNF alpha, IL-23, IL-1 beta, IL-12, etc) and exacerbate neuronal injury, whereas the M2 phenotype promotes anti-inflammatory responses that are reparative. It has important translational value to regulate M1/M2 microglial activation to minimize the detrimental effects and/or maximize the protective role. Here, we discuss various regulators of microglia/macrophage activation and the interaction between microglia and neurons in the context of ischemic stroke.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据