4.7 Article

A Superoxide Dismutase Capable of Functioning with Iron or Manganese Promotes the Resistance of Staphylococcus aureus to Calprotectin and Nutritional Immunity

期刊

PLOS PATHOGENS
卷 13, 期 1, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.ppat.1006125

关键词

-

资金

  1. National Institutes of Health [K22 AI104805, R01 AI118880, R01 AI101171]
  2. Royal Society
  3. Wellcome Trust [098375/Z/12/Z]
  4. BBSRC
  5. March of Dimes
  6. Wellcome Trust [098375/Z/12/Z] Funding Source: Wellcome Trust
  7. Biotechnology and Biological Sciences Research Council [1369848] Funding Source: researchfish

向作者/读者索取更多资源

Staphylococcus aureus is a devastating mammalian pathogen for which the development of new therapeutic approaches is urgently needed due to the prevalence of antibiotic resistance. During infection pathogens must overcome the dual threats of host-imposed manganese starvation, termed nutritional immunity, and the oxidative burst of immune cells. These defenses function synergistically, as host-imposed manganese starvation reduces activity of the manganese-dependent enzyme superoxide dismutase (SOD). S. aureus expresses two SODs, denoted SodA and SodM. While all staphylococci possess SodA, SodM is unique to S. aureus, but the advantage that S. aureus gains by expressing two apparently manganese-dependent SODs is unknown. Surprisingly, loss of both SODs renders S. aureus more sensitive to host-imposed manganese starvation, suggesting a role for these proteins in overcoming nutritional immunity. In this study, we have elucidated the respective contributions of SodA and SodM to resisting oxidative stress and nutritional immunity. These analyses revealed that SodA is important for resisting oxidative stress and for disease development when manganese is abundant, while SodM is important under manganese-deplete conditions. In vitro analysis demonstrated that SodA is strictly manganese-dependent whereas SodM is in fact cambialistic, possessing equal enzymatic activity when loaded with manganese or iron. Cumulatively, these studies provide a mechanistic rationale for the acquisition of a second superoxide dismutase by S. aureus and demonstrate an important contribution of cambialistic SODs to bacterial pathogenesis. Furthermore, they also suggest a new mechanism for resisting manganese starvation, namely populating manganese-utilizing enzymes with iron.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据