4.7 Article

Generality of toxins in defensive symbiosis: Ribosome-inactivating proteins and defense against parasitic wasps in Drosophila

期刊

PLOS PATHOGENS
卷 13, 期 7, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.ppat.1006431

关键词

-

资金

  1. Sinergia Program of the Swiss National Science Foundation [CRSII3_154396]
  2. Sinergia grant from the Swiss National Science Foundation

向作者/读者索取更多资源

While it has become increasingly clear that multicellular organisms often harbor microbial symbionts that protect their hosts against natural enemies, the mechanistic underpinnings underlying most defensive symbioses are largely unknown. Spiroplasma bacteria are widespread associates of terrestrial arthropods, and include strains that protect diverse Drosophila flies against parasitic wasps and nematodes. Recent work implicated a ribosomeinactivating protein (RIP) encoded by Spiroplasma, and related to Shiga-like toxins in enterohemorrhagic Escherichia coli, in defense against a virulent parasitic nematode in the woodland fly, Drosophila neotestacea. Here we test the generality of RIP-mediated protection by examining whether Spiroplasma RIPs also play a role in wasp protection, in D. melanogaster and D. neotestacea. We find strong evidence for a major role of RIPs, with ribosomal RNA (rRNA) from the larval endoparasitic wasps, Leptopilina heterotoma and Leptopilina boulardi, exhibiting the hallmarks of RIP activity. In Spiroplasma-containing hosts, parasitic wasp ribosomes show abundant site-specific depurination in the alpha-sarcin/ricin loop of the 28S rRNA, with depurination occurring soon after wasp eggs hatch inside fly larvae. Interestingly, we found that the pupal ectoparasitic wasp, Pachycrepoideus vindemmiae, escapes protection by Spiroplasma, and its ribosomes do not show high levels of depurination. We also show that fly ribosomes show little evidence of targeting by RIPs. Finally, we find that the genome of D. neotestacea's defensive Spiroplasma encodes a diverse repertoire of RIP genes, which are differ in abundance. This work suggests that specificity of defensive symbionts against different natural enemies may be driven by the evolution of toxin repertoires, and that toxin diversity may play a role in shaping host-symbiont-enemy interactions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据