4.6 Article

Lack of the PGA exopolysaccharide in Salmonella as an adaptive trait for survival in the host

期刊

PLOS GENETICS
卷 13, 期 5, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pgen.1006816

关键词

-

资金

  1. Spanish Ministry of Economy and Competitiveness [BIO2014-53530-R, SAF2014-56716-REDT]
  2. Ramon y Cajal from Spanish Ministry of Economy and Competitiveness [RYC-2009-03948]

向作者/读者索取更多资源

Many bacteria build biofilm matrices using a conserved exopolysaccharide named PGA or PNAG (poly-beta-1,6-N-acetyl-D-glucosamine). Interestingly, while E. coli and other members of the family Enterobacteriaceae encode the pgaABCD operon responsible for PGA synthesis, Salmonella lacks it. The evolutionary force driving this difference remains to be determined. Here, we report that Salmonella lost the pgaABCD operon after the divergence of Salmonella and Citrobacter clades, and previous to the diversification of the currently sequenced Salmonella strains. Reconstitution of the PGA machinery endows Salmonella with the capacity to produce PGA in a cyclic dimeric GMP (c-di-GMP) dependent manner. Outside the host, the PGA polysaccharide does not seem to provide any significant benefit to Salmonella: resistance against chlorine treatment, ultraviolet light irradiation, heavy metal stress and phage infection remained the same as in a strain producing cellulose, the main biofilm exopolysaccharide naturally produced by Salmonella. In contrast, PGA production proved to be deleterious to Salmonella survival inside the host, since it increased susceptibility to bile salts and oxidative stress, and hindered the capacity of S. Enteritidis to survive inside macrophages and to colonize extraintestinal organs, including the gallbladder. Altogether, our observations indicate that PGA is an antivirulence factor whose loss may have been a necessary event during Salmonella speciation to permit survival inside the host.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据