4.6 Article

Post-transcriptional regulation across human tissues

期刊

PLOS COMPUTATIONAL BIOLOGY
卷 13, 期 5, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pcbi.1005535

关键词

-

资金

  1. SPARC grant from Broad Institute
  2. Washington Research Foundation Fund for Innovation in Data Intensive Discovery
  3. Moore/Sloan Data Science Environments Project at the University of Washington
  4. NIGMS of the NIH [DP2GM123497]
  5. Div Of Information & Intelligent Systems
  6. Direct For Computer & Info Scie & Enginr [1149662] Funding Source: National Science Foundation

向作者/读者索取更多资源

Transcriptional and post-transcriptional regulation shape tissue-type-specific proteomes, but their relative contributions remain contested. Estimates of the factors determining protein levels in human tissues do not distinguish between (i) the factors determining the variability between the abundances of different proteins, i.e., mean-level-variability and, (ii) the factors determining the physiological variability of the same protein across different tissue types, i.e., across-tissues variability. We sought to estimate the contribution of transcript levels to these two orthogonal sources of variability, and found that scaled mRNA levels can account for most of the mean-level-variability but not necessarily for across-tissues variability. The reliable quantification of the latter estimate is limited by substantial measurement noise. However, protein-to-mRNA ratios exhibit substantial across-tissues variability that is functionally concerted and reproducible across different datasets, suggesting extensive post-transcriptional regulation. These results caution against estimating protein fold-changes from mRNA fold-changes between different cell-types, and highlight the contribution of post-transcriptional regulation to shaping tissue-type-specific proteomes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据