4.6 Article

Simple biochemical networks allow accurate sensing of multiple ligands with a single receptor

期刊

PLOS COMPUTATIONAL BIOLOGY
卷 13, 期 4, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pcbi.1005490

关键词

-

资金

  1. James S. McDonnell Foundation grant [220020321]
  2. National Science Foundation [IOS-1208126, PoLS-1410978]
  3. Direct For Mathematical & Physical Scien
  4. Division Of Physics [1410978] Funding Source: National Science Foundation

向作者/读者索取更多资源

Cells use surface receptors to estimate concentrations of external ligands. Limits on the accuracy of such estimations have been well studied for pairs of ligand and receptor species. However, the environment typically contains many ligands, which can bind to the same receptors with different affinities, resulting in cross-talk. In traditional rate models, such cross-talk prevents accurate inference of concentrations of individual ligands. In contrast, here we show that knowing the precise timing sequence of stochastic binding and unbinding events allows one receptor to provide information about multiple ligands simultaneously and with a high accuracy. We show that such high-accuracy estimation of multiple concentrations can be realized with simple structural modifications of the familiar kinetic proofreading biochemical network diagram. We give two specific examples of such modifications. We argue that structural and functional features of real cellular biochemical sensory networks in immune cells, such as feedforward and feedback loops or ligand antagonism, sometimes can be understood as solutions to the accurate multi-ligand estimation problem.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据