4.8 Article

Efficient Polymer Solar Cells by Lithium Sulfonated Polystyrene as a Charge Transport Interfacial Layer

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 9, 期 6, 页码 5348-5357

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.6b13642

关键词

ionomer; inverted polymer solar cells; charge transport; interfacial modification; charge carrier recombination

资金

  1. NSF [EECS 1351785]
  2. Air Force Scientific Research [FA9550-15-1-0292]
  3. Natural Science Foundation of China [51329301]
  4. Directorate For Engineering
  5. Div Of Electrical, Commun & Cyber Sys [1351785] Funding Source: National Science Foundation

向作者/读者索取更多资源

In this paper, we report the highly efficient bulk heterojunction (BHJ) polymer solar cells (PSCs) with an inverted device structure via utilizing an ultrathin layer of lithium sulfonated polystyrene (LiSPS) ionomer to reengineer the surface of the solution-processed zinc oxide (ZnO) electron extraction layer (EEL). The unique lithium-ionic conductive LiSPS contributes to enhanced electrical conductivity of the ZnO/LiSPS EEL, which not only facilitates charge extraction from the BHJ active layer but also minimizes the energy loss within the charge transport processes. In addition, the organic-inorganic LiSPS ionomer well circumvents the coherence issue of the organic BHJ photoactive layer on the ZnO EEL. Consequently, the enhanced charge transport and the lowered internal resistance between the BHJ photoactive layer and the ZnO/LiSPS EEL give rise to a dramatically reduced dark saturation current density and significantly minimized charge carrier recombination. As a result, the inverted BHJ PSCs with the ZnO/LiSPS EEL exhibit an approximatively 25% increase in power conversion efficiency. These results indicate our strategy provides an easy, but effective, approach to reach high performance inverted PSCs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据