4.7 Article

Topological Superconductivity in a Planar Josephson Junction

期刊

PHYSICAL REVIEW X
卷 7, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevX.7.021032

关键词

-

资金

  1. Minerva Foundation
  2. Marie Curie Career Integration Grant
  3. European Research Council (ERC) under the European Union's Horizon research and innovation programme [639172]
  4. STC Center for Integrated Quantum Materials, NSF [DMR-1231319]
  5. NSF [DMR-1206016]
  6. ERC under project MUNATOP
  7. Microsoft Station Q
  8. Israel Science Foundation
  9. DFG [CRC 183]

向作者/读者索取更多资源

We consider a two-dimensional electron gas with strong spin-orbit coupling contacted by two superconducting leads, forming a Josephson junction. We show that in the presence of an in-plane Zeeman field, the quasi-one-dimensional region between the two superconductors can support a topological superconducting phase hosting Majorana bound states at its ends. We study the phase diagram of the system as a function of the Zeeman field and the phase difference between the two superconductors (treated as an externally controlled parameter). Remarkably, at a phase difference of pi, the topological phase is obtained for almost any value of the Zeeman field and chemical potential. In a setup where the phase is not controlled externally, we find that the system undergoes a first-order topological phase transition when the Zeeman field is varied. At the transition, the phase difference in the ground state changes abruptly from a value close to zero, at which the system is trivial, to a value close to p, at which the system is topological. The critical current through the junction exhibits a sharp minimum at the critical Zeeman field and is therefore a natural diagnostic of the transition. We point out that in the presence of a symmetry under a mirror reflection followed by time reversal, the system belongs to a higher symmetry class, and the phase diagram as a function of the phase difference and the Zeeman field becomes richer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据