4.7 Article

Models and Algorithms for the Next Generation of Glass Transition Studies

期刊

PHYSICAL REVIEW X
卷 7, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevX.7.021039

关键词

-

资金

  1. European Research Council under the European Union [306845]
  2. Simons Foundation [454933]

向作者/读者索取更多资源

Successful computer studies of glass-forming materials need to overcome both the natural tendency to structural ordering and the dramatic increase of relaxation times at low temperatures. We present a comprehensive analysis of eleven glass-forming models to demonstrate that both challenges can be efficiently tackled using carefully designed models of size polydisperse supercooled liquids together with an efficient Monte Carlo algorithm where translational particle displacements are complemented by swaps of particle pairs. We study a broad range of size polydispersities, using both discrete and continuous mixtures, and we systematically investigate the role of particle softness, attractivity, and nonadditivity of the interactions. Each system is characterized by its robustness against structural ordering and by the efficiency of the swap Monte Carlo algorithm. We show that the combined optimization of the potential's softness, polydispersity, and nonadditivity leads to novel computer models with excellent glass-forming ability. For such models, we achieve over 10 orders of magnitude gain in the equilibration time scale using the swap Monte Carlo algorithm, thus paving the way to computational studies of static and thermodynamic properties under experimental conditions. In addition, we provide microscopic insight into the performance of the swap algorithm, which should help optimize models and algorithms even further.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据