4.6 Article

Flux penetration in a superconducting film partially capped with a conducting layer

期刊

PHYSICAL REVIEW B
卷 95, 期 9, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.95.094506

关键词

-

资金

  1. Fonds de la Recherche Scientifique-FNRS
  2. ARC - Wallonia-Brussels Federation [13/18-08]
  3. Brazilian National Council for Scientific and Technological Development (CNPq)
  4. Sao Paulo Research Foundation (FAPESP)
  5. program for scientific cooperation F.R.S.-FNRS-CNPq
  6. Flemish government
  7. Flemish Science Foundation (FWO)
  8. COST MP1201 NanoSC Action
  9. FRS-FNRS (Research Fellowship)
  10. Mandat d'Impulsion Scientifique of the F.R.S.-FNRS [MIS F.4527.13]
  11. Research Council of Antwerp University (BOF)
  12. LANEF framework [ANR-10-LABX-51-01]
  13. Nanoscience Foundation

向作者/读者索取更多资源

The influence of a conducting layer on the magnetic flux penetration in a superconducting Nb film is studied by magneto-optical imaging. The metallic layer partially covering the superconductor provides an additional velocity-dependent damping mechanism for the flux motion that helps to protect the superconducting state when thermomagnetic instabilities develop. If the flux advances with a velocity slower than omega = 2/mu(0)sigma t, where sigma is the cap layer conductivity and t is its thickness, the flux penetration remains unaffected, whereas for incoming flux moving faster than w, the metallic layer becomes an active screening shield. When the metallic layer is replaced by a perfect conductor, it is expected that the flux braking effect will occur for all flux velocities. We investigate this effect by studying Nb samples with a thickness step. Some of the observed features, namely the deflection of the flux trajectories at the border of the thick center, as well as the favored flux penetration at the indentation, are reproduced by time-dependent Ginzburg-Landau simulations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据