4.7 Article

Flame stability and heat transfer analysis of methane-air mixtures in catalytic micro-combustors

期刊

APPLIED THERMAL ENGINEERING
卷 114, 期 -, 页码 837-848

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.applthermaleng.2016.12.028

关键词

Micro-combustion; Flame stability; Extinction; Blowout; Catalytic combustion; Heat transfer characteristics

资金

  1. National Natural Science Foundation of China [51506048]

向作者/读者索取更多资源

The flame stability and heat transfer characteristics of methane-air mixtures in catalytic micro combustors were studied, using a two-dimensional computational fluid dynamics (CFD) model with detailed chemistry and transport. The effects of wall thermal conductivity, surface emissivity, fuel, flow velocity, and equivalence ratio were explored to provide guidelines for optimal design. Furthermore, the underlying mechanisms of heat and mass transfer for loss of flame stability were elucidated. Finally, stability diagrams were constructed and design recommendations were made. It was found that the heat loss strongly affects extinction, whereas the wall thermal conductivity greatly affects blowout. The presence of homogeneous chemistry extends blowout limits, especially for inlet velocities higher than 6 m/s. Increasing transverse heat transfer rate reduces stability, whereas increasing transverse mass transfer rate improves stability. Surface radiation behaves similarly to the heat conduction within the walls, but opposite trends are observed. High emissivity causes the flame to shift downstream. Methane exhibits much broader blowout limits. For a combustor with gap size of 0.8 mm, a residence time higher than 3 ms is required to prevent breakthrough, and inlet velocities lower than 0.8 m/s are the most desirable operation regime. Further increase of the wall thermal conductivity beyond 80 W/(mK) could not yield an additional increase in stability. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据