4.6 Article

Tunable dynamics of a flake on graphene: Libration frequency

期刊

PHYSICAL REVIEW B
卷 95, 期 12, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.95.125413

关键词

-

资金

  1. Academy of Sciences of Turkey TUBA
  2. TUBITAK [114F453]

向作者/读者索取更多资源

In this paper we investigated the interaction between a graphene nanoflake anchored to the 2D graphene monolayer. This interaction is attractive but weak and is capable of setting a well defined registry in equilibrium. Rotational and linear displacements from equilibrium registry generate restoring forces, which can be controlled by external agents. Similar flakes can be self-assembled and can also execute simple harmonic motion as if a physical pendulum. Oscillation of a nanoflake about their equilibrium registries resulting in a characteristic libration frequency is predicted. This frequency depends on the size and geometry of the flake. Moreover, the libration frequency, as well as the electronic and magnetic properties of the flake+monolayer systems, can be tuned by a foreign molecule anchored to the flake, by electric charging and applied parallel and perpendicular electric and magnetic fields. When the sliding of the flake is combined with rotation, the friction force can be reduced dramatically. It is surprising that weak interaction can offer such features at nanoscale, which may offer potential applications. Our predictions are obtained by first-principles calculations based on density functional theory.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据