4.8 Article

Heterostructured WS2-MoS2 Ultrathin Nanosheets Integrated on CdS Nanorods to Promote Charge Separation and Migration and Improve Solar-Driven Photocatalytic Hydrogen Evolution

期刊

CHEMSUSCHEM
卷 10, 期 7, 页码 1563-1570

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cssc.201601799

关键词

cadmium; hydrogen; molybdenum; nanohybrids; tungsten; water splitting

资金

  1. National Research Foundation of Korea (NRF)
  2. Korean government (MSIP) [2014R1A4A1001690, NRF-2016R1E1A1A01941978]
  3. National Research Foundation of Korea [2014R1A4A1001690, 2016R1E1A1A01941978] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Solar-driven photocatalytic hydrogen evolution is important to bring solar-energy-to-fuel energy-conversion processes to reality. However, there is a lack of highly efficient, stable, and non-precious photocatalysts, and catalysts not designed completely with expensive noble metals have remained elusive, which hampers their large-scale industrial application. Herein, for the first time, a highly efficient and stable noble-metal-free CdS/WS2-MoS2 nanocomposite was designed through a facile hydrothermal approach. When assessed as a photocatalyst for water splitting, the CdS/WS2-MoS2 nanostructures exhibited remarkable photocatalytic hydrogen-evolution performance and impressive durability. An excellent hydrogen evolution rate of 209.79mmolg(-1)h(-1) was achieved under simulated sunlight irradiation, which is higher than the values for CdS/MoS2 (123.31mmolg(-1)h(-1)) and CdS/WS2 nanostructures (169.82mmolg(-1)h(-1)) and the expensive CdS/Pt benchmark catalyst (34.98mmolg(-1)h(-1)). The apparent quantum yield reached 51.4% at =425nm in 5h. Furthermore, the obtained hydrogen evolution rate was better than those of several noble-metal-free catalysts reported previously. The observed high rate of hydrogen evolution and remarkable stability may be a result of the ultrafast separation of photogenerated charge carriers and transport between the CdS nanorods and the WS2-MoS2 nanosheets, which thus increases the number of electrons involved in hydrogen production. The proposed designed strategy is believed to potentially open a door to the design of advanced noble-metal-free photocatalytic materials for efficient solar-driven hydrogen production.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据