4.7 Article

The Podospora anserina lytic polysaccharide monooxygenase PaLPMO9H catalyzes oxidative cleavage of diverse plant cell wall matrix glycans

期刊

BIOTECHNOLOGY FOR BIOFUELS
卷 10, 期 -, 页码 -

出版社

BIOMED CENTRAL LTD
DOI: 10.1186/s13068-017-0749-5

关键词

AA9; LPMO; Lignocellulose; Biomass; Polysaccharides; Mass spectrometry; Biorefinery

资金

  1. AMIDEX foundation (Funcopper project) [A*M-AAP-EI-13-13-130115-15.37]
  2. MicrobioE project [ANR-11-IDEX-0001-02]
  3. NSERC (Discovery Grant)
  4. Canada Foundation for Innovation
  5. British Columbia Knowledge Development Fund

向作者/读者索取更多资源

Background: The enzymatic conversion of plant biomass has been recently revolutionized by the discovery of lytic polysaccharide monooxygenases (LPMO) that catalyze oxidative cleavage of polysaccharides. These powerful enzymes are secreted by a large number of fungal saprotrophs and are important components of commercial enzyme cocktails used for industrial biomass conversion. Among the 33 AA9 LPMOs encoded by the genome of Podospora anserina, the PaLPMO9H enzyme catalyzes mixed C1/C4 oxidative cleavage of cellulose and cello-oligosaccharides. Activity of PaLPMO9H on several hemicelluloses has been suggested, but the regioselectivity of the cleavage remained to be determined. Results: In this study, we investigated the activity of PaLPMO9H on mixed-linkage glucans, xyloglucan and glucomannan using tandem mass spectrometry and ion mobility-mass spectrometry. Structural analysis of the released products revealed that PaLPMO9H catalyzes C4 oxidative cleavage of mixed-linkage glucans and mixed C1/C4 oxidative cleavage of glucomannan and xyloglucan. Gem-diols and ketones were produced at the non-reducing end, while aldonic acids were produced at the reducing extremity of the products. Conclusion: The ability of PaLPMO9H to target polysaccharides, differing from cellulose by their linkages, glycosidic composition and/or presence of sidechains, could be advantageous for this coprophilous fungus when catabolizing highly variable polysaccharides and for the development of optimized enzyme cocktails in biorefineries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据