4.5 Article

Planar Timoshenko-like model for multilayer non-prismatic beams

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s10999-016-9360-3

关键词

Non-homogeneous non-prismatic beam; Tapered beam; Beam of variable cross-section; First order beam model; Arch shaped beam

资金

  1. Austrian Science Fund (FWF)
  2. Austrian Science Fund (FWF) [M 2009-N32]

向作者/读者索取更多资源

This paper aims at proposing a Timoshenko-like model for planar multilayer (i.e., non-homogeneous) non-prismatic beams. The main peculiarity of multilayer non-prismatic beams is a non-trivial stress distribution within the cross-section that, therefore, needs a more careful treatment. In greater detail, the axial stress distribution is similar to the one of prismatic beams and can be determined through homogenization whereas the shear distribution is completely different from prismatic beams and depends on all the internal forces. The problem of the representation of the shear stress distribution is overcame by an accurate procedure that is devised on the basis of the Jourawsky theory. The paper demonstrates that the proposed representation of cross-section stress distribution and the rigorous procedure adopted for the derivation of constitutive, equilibrium, and compatibility equations lead to Ordinary Differential Equations that couple the axial and the shear bending problems, but allow practitioners to calculate both analytical and numerical solutions for almost arbitrary beam geometries. Specifically, the numerical examples demonstrate that the proposed beam model is able to predict displacements, internal forces, and stresses very accurately and with moderate computational costs. This is also valid for highly heterogeneous beams characterized by thin and extremely stiff layers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据