4.8 Article

Development of Bioactive PEGylated Nanostructured Platforms for Sequential Delivery of Doxorubicin and Imatinib to Overcome Drug Resistance in Metastatic Tumors

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 9, 期 11, 页码 9280-9290

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.6b09163

关键词

metastasis; doxorubicin; imatinib; nanostructured platform; drug delivery; chemoresistance

资金

  1. National Research Foundation of Korea (NRF) grant - Korea government (MSIP) [2015R1A2A2A01004118, 2015R1A2A2A04004806]
  2. Medical Research Center Program through the NRF - MSIP [2015R1A5A2009124]

向作者/读者索取更多资源

Metastasis of cancers accounts for almost all cancer-related deaths. In this study, we report a PEGylated nanostructured platform for coadministration of doxorubicin (DOX) and imatinib (IMT) intended to effectively inhibit metastatic tumors. The DOX and IMT coloaded nanostructured system (DOX/IMT-N) is characterized by an excellent encapsulation potential for both drugs and shows sequential and sustained drug release in vitro. DOX/IMT-N significantly inhibited the in vitro proliferation of MDA-MB-231 and SK-MEL-28 cells. The inhibitory effect on in vitro proliferation of the cells was significantly greater than the effect of free DOX, DOX/IMT cocktail, or the nanostructured system housing DOX only (DOX-N). DOX/IMT-N remarkably enhanced cellular drug uptake, resulting in enhanced apoptosis, caused by significant increases in the expression levels of apoptotic marker proteins. Intravenous administration of DOX/IMT-N to MBA-MB-231 xenograft tumor-bearing mice resulted in significantly improved inhibition of tumor progression compared to that with DOX, DOX/IMT, or DOX-N. Therefore, the nanostructured DOX/IMT-N system could potentially aid in overcoming drug resistance in metastatic tumors and improve the effectiveness of metastatic tumor therapeutics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据