4.8 Article

Nanosized sustained-release drug depots fabricated using modified tri-axial electrospinning

期刊

ACTA BIOMATERIALIA
卷 53, 期 -, 页码 233-241

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2017.01.069

关键词

Nanoscale drug depot; Sustained release; Cellulose acetate; Tri-axial electrospinning; Core-shell nanostructure

资金

  1. Natural Science Foundation of China [51373101]
  2. NSFC/UK Royal Society International Exchanges Scheme [51411130128/IE131748]
  3. Hujiang Foundation of China [B14006]

向作者/读者索取更多资源

Nanoscale drug depots, comprising a drug reservoir surrounded by a carrier membrane, are much sought after in contemporary pharmaceutical research. Using cellulose acetate (CA) as a filament-forming polymeric matrix and ferulic acid (FA) as a model drug, nanoscale drug depots in the form of core-shell fibers were designed and fabricated using a modified tri-axial electrospinning process. This employed a solvent mixture as the outer working fluid, as a result of which a robust and continuous preparation process could be achieved. The fiber-based depots had a linear morphology, smooth surfaces, and an average diameter of 0.62 +/- 0.07 mu m. Electron microscopy data showed them to have clear core-shell structures, with the FA encapsulated inside a CA shell. X-ray diffraction and IR spectroscopy results verified that FA was present in the crystalline physical form. In vitro dissolution tests revealed that the fibers were able to provide close to zero-order release over 36 h, with no initial burst release and minimal tailing off. The release properties of the depot systems were much improved over monolithic CA/FA fibers, which exhibited a significant burst release and also considerable tailing-off at the end of the release experiment. Here we thus demonstrate the concept of using modified tri-axial electrospinning to design and develop new types of heterogeneous nanoscale biomaterials. Statement of Significance Nanoscale drug depots with a drug reservoir surrounded by a carrier are highly attractive in biomedicine. A cellulose acetate based drug depot was investigated in detail, starting with the design of the nanostructure, and moving through its fabrication using a modified tri-axial electrospinning process and a series of characterizations. The core-shell fiber-based drug depots can provide a more sustained release profile with no initial burst effect and less tailing-off than equivalent monolithic drug-loaded fibers. The drug release mechanisms are also distinct in the two systems. This proof-of-concept work can be further expanded to conceive a series of new structural biomaterials with improved or new functional performance. (C) 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据