4.6 Article

A Framework to Quantify Karyotype Variation Associated with CHO Cell Line Instability at a Single-Cell Level

期刊

BIOTECHNOLOGY AND BIOENGINEERING
卷 114, 期 5, 页码 1045-1053

出版社

WILEY
DOI: 10.1002/bit.26231

关键词

Chinese hamster ovary (CHO) cells; karyotype analysis; cell line instability; long-term cell culture; biomanufacturing; clonality

资金

  1. National Science Foundation [1412365, 1539359]
  2. Direct For Biological Sciences
  3. Div Of Molecular and Cellular Bioscience [1412365, 1539359] Funding Source: National Science Foundation

向作者/读者索取更多资源

Chinese hamster ovary (CHO) cells, the major mammalian host cells for biomanufacturing of therapeutic proteins, have been extensively investigated to enhance productivity and product quality. However, cell line instability resulting in unexpected changes in productivity or product quality continues to be a challenge. Based on previous reports about causes and characteristics of production instability, we hypothesized that chromosomal rearrangements due to genomic instability are associated with production instability and that these events can be characterized. We developed a production instability model using secreted alkaline phosphatase (SEAP)-expressing CHO cells (CHO-SEAP) as well as a framework to quantify chromosomal rearrangements by karyotyping. In the absence of methotrexate (MTX), CHO-SEAP cells exhibited a slightly increased growth rate, a significantly decreased specific productivity, and changes in the chromosomal rearrangement ratio of seven chromosomes. In contrast, when MTX was re-introduced, the growth rate and SEAP productivity reversed to the initial values, demonstrating the reversibility of production instability in CHO-SEAP cells. Fluorescence in situ hybridization analysis identified that the SEAP genes were incorporated in the chromosomal rearrangement (insertion) part of the der(Z9) chromosome. Karyotype analysis indicated that the insertion ratio of the der(Z9) chromosome decreased in the CHO-SEAP cells grown without MTX, demonstrating a correlation between chromosomal rearrangement and production instability. Our results support a mechanism for production instability, wherein a randomly generated chromosomal rearrangement (or genotype) results in cells with a growth advantage that is also associated with non (or low)-producing traits. As a result, the non-producing cells grow faster and thereby outgrow the producing population. (C) 2016 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据