4.8 Article

Self-Assembly of Large Gold Nanoparticles for Surface-Enhanced Raman Spectroscopy

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 9, 期 15, 页码 13457-13470

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.7b01121

关键词

surface-enhanced Raman spectroscopy; gold nanoparticle; self-assembly; monolayer; battery electrolyte; FDTD

资金

  1. U.S. Department of Energy [DE-AC05-00OR22725]
  2. Department of Energy
  3. Laboratory Directed Research and Development Program of Oak Ridge National Laboratory
  4. National Science Foundation [DMR-1157490, DMR-0654118]
  5. State of Florida
  6. Florida State University
  7. FAMU-FSU College of Engineering
  8. United States Government

向作者/读者索取更多资源

Performance of portable technologies from mobile phones to electric vehicles is currently limited by the energy density and lifetime of lithium batteries. Expanding the limits of battery technology requires in situ detection of trace components at electrode electrolyte interphases. Surface-enhance Raman spectros-copy could satisfy this, need if a robust and reproducible substrate were available. Gold nanoparticles (Au NPs) larger than 20 rim diameter are expected to greatly enhance Raman intensity if they can be assembled into ordered monolayers. A three-phase self-assembly method is presented that successfully results in ordered Au NP monolayers for particle diameters ranging from 13 to 90 nm. The 0 monolayer structure and Raman enhancement factors (EFs) are reported for a model analyte, rhodamine, as well as the best performing polymer electrolyte salt, lithium bis(trifluoromethane)sulfonimide. Experimental EFs for the most part correlate with predictions based on monolayer geometry and with numerical simulations that identify local electromagnetic field enhancements. The EFs for the best performing Au NP monolayer are between 106 and 108 and give quantitative signal response when analyte, concentration is changed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据