4.8 Article

Bacterial Metabolism Affects the C. elegans Response to Cancer Chemotherapeutics

期刊

CELL
卷 169, 期 3, 页码 431-+

出版社

CELL PRESS
DOI: 10.1016/j.cell.2017.03.046

关键词

-

资金

  1. NIH [DK068429, GM082971, GM107227, AI121836, GM122393]
  2. NIH Office of Research Infrastructure Programs [P40 OD010440]

向作者/读者索取更多资源

The human microbiota greatly affects physiology and disease; however, the contribution of bacteria to the response to chemotherapeutic drugs remains poorly understood. Caenorhabditis elegans and its bacterial diet provide a powerful system to study host-bacteria interactions. Here, we use this system to study how bacteria affect the C. elegans response to chemotherapeutics. We find that different bacterial species can increase the response to one drug yet decrease the effect of another. We perform genetic screens in two bacterial species using three chemotherapeutic drugs: 5-fluorouracil (5-FU), 5-fluoro-20-deoxyuridine (FUDR), and camptothecin (CPT). We find numerous bacterial nucleotide metabolism genes that affect drug efficacy in C. elegans. Surprisingly, we find that 5-FU and FUDR act through bacterial ribonucleotide metabolism to elicit their cytotoxic effects in C. elegans rather than by thymineless death or DNA damage. Our study provides a blueprint for characterizing the role of bacteria in the host response to chemotherapeutics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据