4.6 Article

First-principles multiscale modelling of charged adsorbates on doped graphene

期刊

2D MATERIALS
卷 4, 期 2, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/2053-1583/aa6811

关键词

density-functional theory; tight-binding; Thomas-Fermi theory; multiscale simulation; Coulomb impurity; doped graphene

资金

  1. Thomas Young Centre [TYC-101]
  2. UK Engineering and Physical Sciences Research Council (EPSRC) [EP/J015059/1, EP/N005244/1]
  3. UK's HEC Materials Chemistry Consortium [EP/L000202]
  4. EPSRC [EP/L000202/1, EP/J015059/1, EP/N005244/1] Funding Source: UKRI
  5. Engineering and Physical Sciences Research Council [EP/L000202/1, EP/N005244/1, EP/J015059/1] Funding Source: researchfish

向作者/读者索取更多资源

Adsorbed atoms and molecules play an important role in controlling and tuning the functional properties of two-dimensional (2D) materials. Understanding and predicting this process from theory is challenging because of the need to capture the complex interplay between the local chemistry and the long-range screening response. To address this problem, we present a first-principles multiscale approach that combines linear-scaling density-functional theory, continuum screening theory and large-scale tight-binding simulations into a seamless parameter-free theory of adsorbates on 2D materials. We apply this method to investigate the electronic structure of doped graphene with a single calcium (Ca) adatom and find that the Ca atom acts as a Coulomb impurity which modifies the graphene local density of states (LDOS) within a distance of several nanometres in its vicinity. We also observe an important doping dependence of the graphene LDOS near the Ca atom, which gives insights into electronic screening in graphene. Our multiscale framework opens up the possibility of investigating complex mesoscale adsorbate configurations on 2D materials relevant to real devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据