4.8 Article

High-Pressure Ozone-Induced Dissociation for Lipid Structure Elucidation on Fast Chromatographic Timescales

期刊

ANALYTICAL CHEMISTRY
卷 89, 期 7, 页码 4223-4229

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.7b00268

关键词

-

资金

  1. Science and Engineering Faculty (QUT)
  2. Australian Research Council [DP150101715]

向作者/读者索取更多资源

Ozone-induced dissociation (OzID) is a novel ion activation technology that exploits the gas-phase reaction between mass-selected ions and ozone inside a mass spectrometer to assign sites of unsaturation in complex lipids. Since it was first demonstrated [Thomas et al. Anal. Chem. 2008, 80, 303], the method has been widely deployed for targeted lipid structure elucidation but as application to high throughput and liquid chromatography-based workflows has been limited due to the relatively slow nature of the requisite ion molecule reactions that result in long ion-trapping times and consequently low instrument duty cycle. Here, the implementation of OzID in a high-pressure region, the ion-mobility spectrometry cell, of a contemporary quadrupole time-of-flight mass spectrometer is described. In this configuration, a high number density of ozone was achieved and thus abundant and diagnostic OzID product ions could be observed even on the timescale of transmission through the reaction region (ca. 20-200 ms), representing a 50-1000-fold improvement in performance over prior OzID implementations. Collision al activation applied prereaction was found to yield complementary and structurally informative product ions arising from ozone- and collision-induced dissociation. Ultimately, the compatibility of this implementation with contemporary ultrahigh performance liquid chromatography is demonstrated with the resulting hyphenated approach showing the ability to separate and uniquely identify isomeric phosphatidylcholines that differ only in their position(s) of unsaturation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据